

Calculating Solubility and Ion Concentration

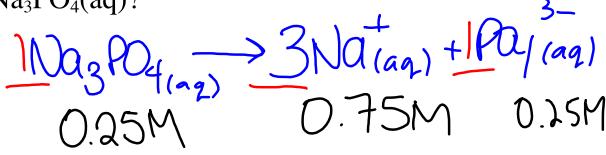
- solubility is usually expressed as molar solubility with units mol
- can be expressed as $\frac{g}{L}$ or $\frac{g}{100 \text{ mL of solution}}$

ex. If the solubility of AgI is 3.45 g/100 mL of solution, what is the solubility in terms of g/L and mol/L?

• to find the solubility experimentally, it is necessary to find the mass of solute required to make a known volume of a saturated solution

ex. If 0.750 L of a saturated AgCl solution contains 2.50 g AgCl, what is the molar solubility

ex. If the molar solubility of PbI₂ is 1.37 x 10⁻³ M, how many grams of PbI₂ will dissolve in 450.0 mL?


$$9 = (1.37 \times 10^{3})$$
 (.450) (461.09) mal Pb= = 0.2849

- when an ionic compound dissolves, it dissociates into ions
- you must be able to write the balanced dissociation equation and calculate the concentration of the ions in solution
- only two kinds of ions are formed (they may be polyatomic!!)

Dissociation Equation:

$$Na_3PO_4(s) \rightarrow 3Na^+(aq) + PO_4^{3-}(aq)$$

 $Ba(NO_3)_2(s) \rightarrow Ba^{2+}(aq) + 2NO_3^{-}(aq)$

ex. What are the concentrations of ions in 0.25 M $Na_3PO_4(aq)$?

ex. What are the concentrations of ions when 150.0 mL of 0.250 M Na₃PO₄(aq) is mixed with 250.0 mL of 0.750 M NaC(aq)?

Conc vol
$$V_2$$
 V_2 V_2 V_3 V_4 V_4 V_5 V_6 V_8 V